论文标题
PS $^2 $ f:单光3D传感的两极分化螺旋点传播功能
PS$^2$F: Polarized Spiral Point Spread Function for Single-Shot 3D Sensing
论文作者
论文摘要
我们提出了一种依赖工程点扩散功能(PSF)的紧凑型快照单眼估计技术。微观超分辨率成像(例如双螺旋PSF(DHPSF))中使用的传统方法不适合比稀疏的一组点光源更复杂的场景。我们使用cramér-rao下限显示,将DHPSF的两个裂片分开,从而捕获两个单独的图像导致深度精度的急剧增加。用于生成DHPSF的相掩码的特殊特性是,将相掩码分为两个半部分,导致两个裂片的空间分离。我们利用该属性建立一个基于紧凑的极化光学设置,在该设置中,我们将两个正交线性极化器放在DHPSF相位掩码的每个一半上,然后用偏振敏感的摄像机捕获所得图像。模拟和实验室原型的结果表明,与包括DHPSF和Tetrapod PSF在内的最新设计相比,我们的技术达到了高达50美元的深度误差,而空间分辨率几乎没有损失。
We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function (PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for scenes that are more complex than a sparse set of point light sources. We show, using the Cramér-Rao lower bound, that separating the two lobes of the DHPSF and thereby capturing two separate images leads to a dramatic increase in depth accuracy. A special property of the phase mask used for generating the DHPSF is that a separation of the phase mask into two halves leads to a spatial separation of the two lobes. We leverage this property to build a compact polarization-based optical setup, where we place two orthogonal linear polarizers on each half of the DHPSF phase mask and then capture the resulting image with a polarization-sensitive camera. Results from simulations and a lab prototype demonstrate that our technique achieves up to $50\%$ lower depth error compared to state-of-the-art designs including the DHPSF and the Tetrapod PSF, with little to no loss in spatial resolution.