论文标题
多设备边缘AI的面向任务的感应,计算和通信集成
Task-Oriented Sensing, Computation, and Communication Integration for Multi-Device Edge AI
论文作者
论文摘要
本文研究了一个新的多设备边缘人工智能(AI)系统,该系统共同利用AI模型拆分推理和集成感应和通信(ISAC),以在网络边缘启用低延迟智能服务。在此系统中,多个ISAC设备执行雷达传感以获取多视图数据,然后将提取功能的量化版本卸载到集中式边缘服务器,该功能基于级联的特征向量进行模型推断。在此设置和考虑分类任务下,我们通过采用近似但可拖动的度量,即判别增益来衡量推理准确性,该指标定义为在归一化协方差下欧几里得特征空间中两个类别的距离。为了最大化判别增益,我们首先用衍生的封闭形式表达来量化感应,计算和通信过程的影响。然后,通过将这三个过程集成到联合设计中来开发面向任务的端到端资源管理方法。然而,由于判别增益的复杂形式和设备异质性在信道增益,量化水平和生成的特征子集方面,这种集成的感应,计算和通信(ISCC)设计方法导致了具有挑战性的非凸优化问题。值得注意的是,可以根据比率的方法最佳地解决所考虑的非凸问题。这给出了最佳ISCC方案,该方案共同确定了多个设备的传输功率和时间分配,以进行传感和通信,以及它们的量化位分配以进行计算失真控制。通过将人类运动识别作为具体的AI推理任务,进行了广泛的实验来验证我们衍生的最佳ISCC方案的性能。
This paper studies a new multi-device edge artificial-intelligent (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC) to enable low-latency intelligent services at the network edge. In this system, multiple ISAC devices perform radar sensing to obtain multi-view data, and then offload the quantized version of extracted features to a centralized edge server, which conducts model inference based on the cascaded feature vectors. Under this setup and by considering classification tasks, we measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain, which is defined as the distance of two classes in the Euclidean feature space under normalized covariance. To maximize the discriminant gain, we first quantify the influence of the sensing, computation, and communication processes on it with a derived closed-form expression. Then, an end-to-end task-oriented resource management approach is developed by integrating the three processes into a joint design. This integrated sensing, computation, and communication (ISCC) design approach, however, leads to a challenging non-convex optimization problem, due to the complicated form of discriminant gain and the device heterogeneity in terms of channel gain, quantization level, and generated feature subsets. Remarkably, the considered non-convex problem can be optimally solved based on the sum-of-ratios method. This gives the optimal ISCC scheme, that jointly determines the transmit power and time allocation at multiple devices for sensing and communication, as well as their quantization bits allocation for computation distortion control. By using human motions recognition as a concrete AI inference task, extensive experiments are conducted to verify the performance of our derived optimal ISCC scheme.