论文标题
Cantor套装上的代数结构
Algebraic structures on the Cantor set
论文作者
论文摘要
在下面,按空间,我们是指可分离的零维空间。当可以将空间嵌入插座集的同时维持代数结构时,研究了它。作品的主要结果:每个空间都是布尔预反部组的开放式缩回;每个强大的均匀空间都是可纠正的。在这种情况下,可以将空间嵌入插座集中,并保存代数结构。建造了一个强烈均匀空间的一个例子,该空间不接受正确的拓扑组的结构。
Below, by space we mean a separable metrizable zero-dimensional space. It is studied when the space can be embedded in a Cantor set while maintaining the algebraic structure. Main results of the work: every space is an open retract of a Boolean precompact group; every strongly homogeneous space is rectifiable. In this case, the space can be embedded in the Cantor set with the preservation of the algebraic structure. An example of a strongly homogeneous space is constructed which do not admit the structure of a right topological group.