论文标题
为保护隐私的语音识别生成性别歧义的声音
Generating gender-ambiguous voices for privacy-preserving speech recognition
论文作者
论文摘要
我们的声音编码了一种独特的可识别模式,该模式可用于推断私人属性(例如性别或身份),个人可能希望在使用语音识别服务时不透露。为了防止属性推理攻击与语音识别任务一起,我们提出了一个生成的对抗网络Gengan,该网络综合了掩盖说话者的性别或身份的声音。拟议的网络包括一个具有U-NET体系结构的生成器,该发电机学会了欺骗歧视者。我们仅根据性别信息来调节发电机,并在信号失真和隐私保护之间使用对抗性损失。我们表明,与将性别信息视为保护性别的敏感属性相比,Gengan可以改善隐私与公用事业之间的权衡。
Our voice encodes a uniquely identifiable pattern which can be used to infer private attributes, such as gender or identity, that an individual might wish not to reveal when using a speech recognition service. To prevent attribute inference attacks alongside speech recognition tasks, we present a generative adversarial network, GenGAN, that synthesises voices that conceal the gender or identity of a speaker. The proposed network includes a generator with a U-Net architecture that learns to fool a discriminator. We condition the generator only on gender information and use an adversarial loss between signal distortion and privacy preservation. We show that GenGAN improves the trade-off between privacy and utility compared to privacy-preserving representation learning methods that consider gender information as a sensitive attribute to protect.