论文标题

有效的交互式编码可实现二进制通道上最佳的错误弹性

Efficient Interactive Coding Achieving Optimal Error Resilience Over the Binary Channel

论文作者

Gupta, Meghal, Zhang, Rachel Yun

论文摘要

鉴于无噪声协议$π_0$计算Alice和Bob的私人输入$ x,y $的函数$ f(x,y)$,交互式编码的目标是构建一个错误的协议$π$计算$ f $ f $,以便即使交流的某些部分是对手,这两个党都会腐败,这两个党仍然学习$ f(x,x,x,y)$。理想情况下,最终的方案$π$应为正速率,计算上有效,并实现最佳的误差弹性。 虽然对大型字母的交互式编码有充分的了解,但二进制字母的情况仍然存在。目前,与大型字母方案的微不足道适应相比,获得更高误差能力的二元字母的已知方案要么是次优误差弹性[EKS20],要么具有指数通信复杂性的最佳误差弹性[EKS20]。在这项工作中,我们在所有三个参数中构建了一个实现最佳性的方案:我们的协议是正速率,计算上有效的,并且对最佳$ \ frac16 -ε$对抗性错误有弹性。 我们的协议采用一种新的代码,我们称之为分层代码,这可能具有独立的兴趣。像树代码一样,分层代码允许编码器以在线方式编码消息,但在图表上定义了而不是树。

Given a noiseless protocol $π_0$ computing a function $f(x, y)$ of Alice and Bob's private inputs $x, y$, the goal of interactive coding is to construct an error-resilient protocol $π$ computing $f$ such that even if some fraction of the communication is adversarially corrupted, both parties still learn $f(x, y)$. Ideally, the resulting scheme $π$ should be positive rate, computationally efficient, and achieve optimal error resilience. While interactive coding over large alphabets is well understood, the situation over the binary alphabet has remained evasive. At the present moment, the known schemes over the binary alphabet that achieve a higher error resilience than a trivial adaptation of large alphabet schemes are either still suboptimally error resilient [EKS20], or optimally error resilient with exponential communication complexity [GZ22]. In this work, we construct a scheme achieving optimality in all three parameters: our protocol is positive rate, computationally efficient, and resilient to the optimal $\frac16 - ε$ adversarial errors. Our protocol employs a new type of code that we call a layered code, which may be of independent interest. Like a tree code, a layered code allows the coder to encode a message in an online fashion, but is defined on a graph instead of a tree.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源