论文标题

通过对财务报表数据培训的神经网络的ETF投资组合构建

ETF Portfolio Construction via Neural Network trained on Financial Statement Data

论文作者

Lee, Jinho, Park, Sungwoo, Ahn, Jungyu, Kwak, Jonghun

论文摘要

最近,高级机器学习方法在资产管理中的应用已成为最有趣的主题之一。不幸的是,由于数据短缺问题,这些方法的应用(例如深神经网络)很困难。为了解决这个问题,我们提出了一种新的方法,使用神经网络根据其组件的财务报表数据来构建交易所交易基金(ETF)的投资组合。尽管在过去的几十年中出现了许多ETF和ETF管理的投资组合,但应用神经网络管理ETF投资组合的能力受到限制,因为ETF的数量和历史存在分别相对较小,比单个股票的数量较小,更短。因此,我们使用单个股票的数据来训练我们的神经网络,以预测单个股票的未来表现,并使用这些预测和投资组合存款文件(PDF)来构建ETF的投资组合。已经进行了多个实验,我们发现我们所提出的方法的表现优于基准。我们认为,当管理最近列出的ETF(例如主题ETF)时,我们的方法可能会更有益,而培训高级机器学习方法的历史数据相对有限。

Recently, the application of advanced machine learning methods for asset management has become one of the most intriguing topics. Unfortunately, the application of these methods, such as deep neural networks, is difficult due to the data shortage problem. To address this issue, we propose a novel approach using neural networks to construct a portfolio of exchange traded funds (ETFs) based on the financial statement data of their components. Although a number of ETFs and ETF-managed portfolios have emerged in the past few decades, the ability to apply neural networks to manage ETF portfolios is limited since the number and historical existence of ETFs are relatively smaller and shorter, respectively, than those of individual stocks. Therefore, we use the data of individual stocks to train our neural networks to predict the future performance of individual stocks and use these predictions and the portfolio deposit file (PDF) to construct a portfolio of ETFs. Multiple experiments have been performed, and we have found that our proposed method outperforms the baselines. We believe that our approach can be more beneficial when managing recently listed ETFs, such as thematic ETFs, of which there is relatively limited historical data for training advanced machine learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源