论文标题

学习使用少量地面真相数据排名

Learning to Rank with Small Set of Ground Truth Data

论文作者

Wu, Jiashu

论文摘要

在过去的几十年中,研究人员已经付出了大量的努力,调查了用于排名在信息检索过程中检索到的查询结果的排名技术,或在推荐系统中对推荐产品进行排名。在这个项目中,我们旨在调查搜索,排名以及建议技术,以帮助实现大学学术界搜索平台。与通常的信息检索方案不同,在我们的情况下,存在许多基础真理排名数据,我们对学术界排名的基础真相知识有限。例如,给定一些搜索查询,我们只知道一些高度相关的研究人员,因此应该排名最高,对于其他一些搜索查询,我们不知道应该将哪些研究人员排名最高。有限的地面真相数据使一些常规的排名技术和评估指标变得不可行,这是我们在本项目中面临的巨大挑战。该项目可以在很大程度上增强用户的学术搜索经验,有助于实现一个学术搜索平台,其中包括研究人员,出版物和研究信息领域,这不仅对大学学院,而且对学生的研究经验都有益。

Over the past decades, researchers had put lots of effort investigating ranking techniques used to rank query results retrieved during information retrieval, or to rank the recommended products in recommender systems. In this project, we aim to investigate searching, ranking, as well as recommendation techniques to help to realize a university academia searching platform. Unlike the usual information retrieval scenarios where lots of ground truth ranking data is present, in our case, we have only limited ground truth knowledge regarding the academia ranking. For instance, given some search queries, we only know a few researchers who are highly relevant and thus should be ranked at the top, and for some other search queries, we have no knowledge about which researcher should be ranked at the top at all. The limited amount of ground truth data makes some of the conventional ranking techniques and evaluation metrics become infeasible, and this is a huge challenge we faced during this project. This project enhances the user's academia searching experience to a large extent, it helps to achieve an academic searching platform which includes researchers, publications and fields of study information, which will be beneficial not only to the university faculties but also to students' research experiences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源