论文标题

S $^{5} $火星:火星语义分段的半监督学习

S$^{5}$Mars: Semi-Supervised Learning for Mars Semantic Segmentation

论文作者

Zhang, Jiahang, Lin, Lilang, Fan, Zejia, Wang, Wenjing, Liu, Jiaying

论文摘要

深度学习已成为火星探索的强大工具。火星地形语义细分是一项重要的火星愿景任务,它是流浪者自动计划和安全驾驶的基础。但是,缺乏足够的详细和高信心数据注释,这是大多数深度学习方法所需的才能获得良好的模型。为了解决这个问题,我们从联合数据和方法设计的角度提出了解决方案。我们首先提出了一个用于火星语义分割的半监督学习的NewDataset S5MAR,其中包含6K高分辨率图像,并根据置信度稀疏注释,以确保标签的高质量。然后,为了从这些稀疏数据中学习,我们提出了一个半监督的学习(SSL)框架,用于火星图像语义分段,以从有限的标记数据中学习表示形式。与主要针对地球图像数据的现有SSL方法不同,我们的方法考虑了火星数据特征。具体而言,我们首先研究了当前广泛使用的自然图像增强对火星图像的影响。基于分析,我们提出了两种新颖的有效增强火星分割的SSL,Augin和Sam-Mix,它们是增强模型性能的强大增强。同时,为了充分利用未标记的数据,我们引入了一种软对一致性学习策略,并根据预测信心从不同的目标中学习。实验结果表明,我们的方法可以胜过最先进的SSL方法。我们提出的数据集可从https://jhang2020.github.io/s5mars.github.io/获得。

Deep learning has become a powerful tool for Mars exploration. Mars terrain semantic segmentation is an important Martian vision task, which is the base of rover autonomous planning and safe driving. However, there is a lack of sufficient detailed and high-confidence data annotations, which are exactly required by most deep learning methods to obtain a good model. To address this problem, we propose our solution from the perspective of joint data and method design. We first present a newdataset S5Mars for Semi-SuperviSed learning on Mars Semantic Segmentation, which contains 6K high-resolution images and is sparsely annotated based on confidence, ensuring the high quality of labels. Then to learn from this sparse data, we propose a semi-supervised learning (SSL) framework for Mars image semantic segmentation, to learn representations from limited labeled data. Different from the existing SSL methods which are mostly targeted at the Earth image data, our method takes into account Mars data characteristics. Specifically, we first investigate the impact of current widely used natural image augmentations on Mars images. Based on the analysis, we then proposed two novel and effective augmentations for SSL of Mars segmentation, AugIN and SAM-Mix, which serve as strong augmentations to boost the model performance. Meanwhile, to fully leverage the unlabeled data, we introduce a soft-to-hard consistency learning strategy, learning from different targets based on prediction confidence. Experimental results show that our method can outperform state-of-the-art SSL approaches remarkably. Our proposed dataset is available at https://jhang2020.github.io/S5Mars.github.io/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源