论文标题
DMC-ICE13:从扩散蒙特卡洛和密度功能理论的冰的环境和高压多晶型物
DMC-ICE13: ambient and high pressure polymorphs of ice from Diffusion Monte Carlo and Density Functional Theory
论文作者
论文摘要
冰是表现出丰富且不断发展的相图的最重要,最有趣的分子晶体之一。最近的发现意味着现在有二十种不同的多晶型物。结构多样性是由氢键和范德华分散力的微妙相互作用产生的。这种丰富的结构提供了对电子结构理论的严厉检验,密度功能理论(DFT)通常无法准确地表征各种冰的相对能量。由于最近的进步,可以通过扩散蒙特卡洛(DMC)准确有效地处理分子晶体,因此我们在这里介绍了DMC-ICE13数据集; 13个冰晶格的晶格能量数据集。该数据集涵盖了在环境和高压分子冰构形成中发现的完整结构复杂性,当获得实验参考能时,我们的DMC结果提供了亚化学的准确性。然后,使用此数据集,我们对广泛的DFT功能进行了广泛的基准。在考虑的功能中,我们发现REVPBE-D3和RSCAN以最小的误差来重现参考绝对晶格能,而OPTB86B-VDW和SCAN+RVV10在相对晶状体能量上具有最佳性能。我们的结果表明,仍然缺少单个功能实现可靠的性能,并且在选择最合适的功能时需要注意。此处获得的见解也可能与液态水以及其他氢键和分散键合的分子晶体有关。
Ice is one of the most important and interesting molecular crystals exhibiting a rich and evolving phase diagram. Recent discoveries mean that there are now twenty distinct polymorphs; a structural diversity that arises from a delicate interplay of hydrogen bonding and van der Waals dispersion forces. This wealth of structures provides a stern test of electronic structure theories, with Density Functional Theory (DFT) often not able to accurately characterise the relative energies of the various ice polymorphs. Thanks to recent advances that enable the accurate and efficient treatment of molecular crystals with Diffusion Monte Carlo (DMC), we present here the DMC-ICE13 dataset; a dataset of lattice energies of 13 ice polymorphs. This dataset encompasses the full structural complexity found in the ambient and high-pressure molecular ice polymorphs and when experimental reference energies are available our DMC results deliver sub-chemical accuracy. Using this dataset we then perform an extensive benchmark of a broad range of DFT functionals. Of the functionals considered, we find revPBE-D3 and RSCAN to reproduce reference absolute lattice energies with the smallest error, whilst optB86b-vdW and SCAN+rVV10 have the best performance on the relative lattice energies. Our results suggest that a single functional achieving reliable performance for all phases is still missing, and that care is needed in the selection of the most appropriate functional for the desired application. The insights obtained here may also be relevant to liquid water and other hydrogen bonded and dispersion bonded molecular crystals.