论文标题
用于重建SST-SSH协同作用的海面动力学的多模式4DVARNET
Multimodal 4DVarNets for the reconstruction of sea surface dynamics from SST-SSH synergies
论文作者
论文摘要
由于海面观测的不规则时空抽样,海面动力学的重建是一个具有挑战性的反问题。尽管卫星高度测定可直接观察海面高度(SSH),该高度与海面电流的无差分组件有关,但相关的采样模式阻止了检索高尺度的海面动力学,通常低于10天的时间尺度。相比之下,其他卫星传感器对海面示踪剂(例如海面温度(SST))提供了更高分辨率的观察结果。然后,多模式反演方案是一种吸引人的策略。尽管理论证据支持在特定动力学方面的海面温度与海面动力学之间存在明确关系,但对上海洋动力学的多种多样的概括是复杂的。在这里,我们从物理知识的学习角度研究了这个问题。我们引入了一种可训练的多模式反演方案,用于从多源卫星衍生的观测值重建海面动力学。提出的4DVARNET方案结合了涉及可训练的观测和先验术语的变异配方与可训练的基于梯度的求解器。我们报告了从卫星衍生的SSH和SST数据中重建海面动力学的无差分组件的应用。与最先进的方案相比,海湾流区域的观察系统仿真实验支持我们方法的相关性。我们报告的相对改善大于50%,而与均方根误差和解决时空尺度有关的操作高度测定产品。我们进一步讨论了提出的方法的应用和扩展,用于从不规则采样的卫星观测值重建和预测地球物理动力学。
Due to the irregular space-time sampling of sea surface observations, the reconstruction of sea surface dynamics is a challenging inverse problem. While satellite altimetry provides a direct observation of the sea surface height (SSH), which relates to the divergence-free component of sea surface currents, the associated sampling pattern prevents from retrieving fine-scale sea surface dynamics, typically below a 10-day time scale. By contrast, other satellite sensors provide higher-resolution observations of sea surface tracers such as sea surface temperature (SST). Multimodal inversion schemes then arise as an appealing strategy. Though theoretical evidence supports the existence of an explicit relationship between sea surface temperature and sea surface dynamics under specific dynamical regimes, the generalization to the variety of upper ocean dynamical regimes is complex. Here, we investigate this issue from a physics-informed learning perspective. We introduce a trainable multimodal inversion scheme for the reconstruction of sea surface dynamics from multi-source satellite-derived observations. The proposed 4DVarNet schemes combine a variational formulation involving trainable observation and a priori terms with a trainable gradient-based solver. We report an application to the reconstruction of the divergence-free component of sea surface dynamics from satellite-derived SSH and SST data. An observing system simulation experiment for a Gulf Stream region supports the relevance of our approach compared with state-of-the-art schemes. We report relative improvement greater than 50% compared with the operational altimetry product in terms of root mean square error and resolved space-time scales. We discuss further the application and extension of the proposed approach for the reconstruction and forecasting of geophysical dynamics from irregularly-sampled satellite observations.