论文标题

预测蜂窝网络中繁忙的下链路流量

Forecasting Busy-Hour Downlink Traffic in Cellular Networks

论文作者

Pimpinella, Andrea, Di Giusto, Federico, Redondi, Alessandro, Venturini, Luisa, Pavon, Andrea

论文摘要

蜂窝交通量的急剧增长要求蜂窝网络运营商制定策略以仔细维度和管理可用的网络资源。预测交通量是任何主动管理策略的基本基础,因此在这种情况下引起了极大的兴趣。与文献中的发现不同,在短期内通常预测网络流量,我们解决了预测繁忙小时流量的问题,即观察到的每日最大值交通量的时间序列。我们在长期(一个,两个月前)进行了专门的预测,并比较了手头的任务的不同方法,考虑了不同的预测算法,并且不依赖或不依赖基于群集的方法,该方法将与类似繁忙的小时交通概况的第一组网络分组,然后拟合每组群体的人均预测模型来预测交通负荷。真正的蜂窝网络数据集中的结果表明,繁忙的小时流量可以在未来长达2个月的前期预测到低于10%的错误。此外,当有群集可用时,我们提高了1和2个月的预测准确性高达8%和5%。

The dramatic growth in cellular traffic volume requires cellular network operators to develop strategies to carefully dimension and manage the available network resources. Forecasting traffic volumes is a fundamental building block for any proactive management strategy and is therefore of great interest in such a context. Differently from what found in the literature, where network traffic is generally predicted in the short-term, in this work we tackle the problem of forecasting busy hour traffic, i.e., the time series of observed daily maxima traffic volumes. We tackle specifically forecasting in the long term (one, two months ahead) and we compare different approaches for the task at hand, considering different forecasting algorithms as well as relying or not on a cluster-based approach which first groups network cells with similar busy hour traffic profiles and then fits per-cluster forecasting models to predict the traffic loads. Results on a real cellular network dataset show that busy hour traffic can be forecasted with errors below 10% for look-ahead periods up to 2 months in the future. Moreover, when clusters are available, we improve forecasting accuracy up to 8% and 5% for look-ahead of 1 and 2 months, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源