论文标题

使用生成对抗网络进行河流演替的概率预测

Probabilistic forecasting for geosteering in fluvial successions using a generative adversarial network

论文作者

Alyaev, Sergey, Tveranger, Jan, Fossum, Kristian, Elsheikh, Ahmed H.

论文摘要

利用实时数据来限制提前不确定性的定量工作流有可能显着改善地理固定。当在预钻机模型中具有高不确定性的复杂储层中进行钻探时,基于实时数据的快速更新至关重要。但是,实时数据的实际同化需要有效的地质建模和数学上强大的参数化。我们提出了一个生成的对抗性深神经网络(GAN),该网络训练有素,可以再现地质一致的河流继承第2D部分。离线训练会产生一个基于GAN的快速基于GAN的复杂地质参数化为60维模型向量,并具有每个组件的标准高斯分布。概率预测是使用一部分设备模型矢量实现生成的。包括GAN在内的前向模型序列将实现的初始(先前)集合转换为EM log预测。合奏更加柔滑,可以最大程度地减少预测和实时数据之间的统计错误,从而产生模型向量的更新并降低孔周围的不确定性。然后可以将更新转化为相应和电阻率的概率预测。本文展示了在基于露头的合成河流演替中进行地理座的工作流程。在我们的示例中,该方法降低了不确定性,并正确预测大多数主要地质特征在钻头之前最高500米。

Quantitative workflows utilizing real-time data to constrain ahead-of-bit uncertainty have the potential to improve geosteering significantly. Fast updates based on real-time data are essential when drilling in complex reservoirs with high uncertainties in pre-drill models. However, practical assimilation of real-time data requires effective geological modeling and mathematically robust parameterization. We propose a generative adversarial deep neural network (GAN), trained to reproduce geologically consistent 2D sections of fluvial successions. Offline training produces a fast GAN-based approximation of complex geology parameterized as a 60-dimensional model vector with standard Gaussian distribution of each component. Probabilistic forecasts are generated using an ensemble of equiprobable model vector realizations. A forward-modeling sequence, including a GAN, converts the initial (prior) ensemble of realizations into EM log predictions. An ensemble smoother minimizes statistical misfits between predictions and real-time data, yielding an update of model vectors and reduced uncertainty around the well. Updates can be then translated to probabilistic predictions of facies and resistivities. The present paper demonstrates a workflow for geosteering in an outcrop-based, synthetic fluvial succession. In our example, the method reduces uncertainty and correctly predicts most major geological features up to 500 meters ahead of drill-bit.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源