论文标题
语义分割的阳性阴性相等对比度损失
Positive-Negative Equal Contrastive Loss for Semantic Segmentation
论文作者
论文摘要
上下文信息对于各种计算机视觉任务至关重要,以前的作品通常设计插件模块和结构损失,以有效地提取和汇总全局上下文。这些方法利用优质标签来优化模型,但忽略了训练精细的特征也是宝贵的训练资源,可以将优选的分布引入硬像素(即错误分类的像素)。受到无监督范式的对比学习的启发,我们以监督的方式应用了对比度损失,并重新设计了损失功能,以抛弃无监督学习的刻板印象(例如,积极和消极的不平衡,对锚定计算的混淆)。为此,我们提出了阳性阴性相等的对比损失(PNE损失),从而增加了阳性嵌入对锚的潜在影响,并同时对待阳性和阴性样本对。 PNE损失可以直接插入现有的语义细分框架中,并在可忽视的额外计算成本中导致出色的性能。我们利用多种经典的分割方法(例如,DeepLabv3,Hrnetv2,Ocrnet,Upernet)和骨干(例如Resnet,Hrnet,Swin Transformer)进行全面的实验,并在三个基础标记数据集中(例如CityScapes,CocoScocoScocoScofef)在三个基础标记数据集中实现最先进的性能。我们的代码即将公开可用。
The contextual information is critical for various computer vision tasks, previous works commonly design plug-and-play modules and structural losses to effectively extract and aggregate the global context. These methods utilize fine-label to optimize the model but ignore that fine-trained features are also precious training resources, which can introduce preferable distribution to hard pixels (i.e., misclassified pixels). Inspired by contrastive learning in unsupervised paradigm, we apply the contrastive loss in a supervised manner and re-design the loss function to cast off the stereotype of unsupervised learning (e.g., imbalance of positives and negatives, confusion of anchors computing). To this end, we propose Positive-Negative Equal contrastive loss (PNE loss), which increases the latent impact of positive embedding on the anchor and treats the positive as well as negative sample pairs equally. The PNE loss can be directly plugged right into existing semantic segmentation frameworks and leads to excellent performance with neglectable extra computational costs. We utilize a number of classic segmentation methods (e.g., DeepLabV3, HRNetV2, OCRNet, UperNet) and backbone (e.g., ResNet, HRNet, Swin Transformer) to conduct comprehensive experiments and achieve state-of-the-art performance on three benchmark datasets (e.g., Cityscapes, COCO-Stuff and ADE20K). Our code will be publicly available soon.