论文标题

通过信息理论的代表性学习covid-19检测

Representation Learning with Information Theory for COVID-19 Detection

论文作者

Berenguer, Abel Díaz, Mukherjee, Tanmoy, Bossa, Matias, Deligiannis, Nikos, Sahli, Hichem

论文摘要

成功的数据表示是基于机器学习的医学成像分析的基本因素。深度学习(DL)在强大的表示学习中起着至关重要的作用。但是,深层模型无法概括地看不见的数据可以迅速过度拟合复杂的模式。因此,我们可以方便地实施策略,以帮助深层模型,从数据中发现有用的先验来学习其内在属性。我们称之为双重角色网络(DRN)的模型使用基于最小平方相互信息(LSMI)的依赖关系最大化方法。 LSMI利用依赖度量来确保表示不变性和局部平稳性。虽然先前的工作使用了信息理论诸如相互信息(由于密度估计步骤)在计算上昂贵的信息理论量度,但我们的LSMI公式减轻了棘手的共同信息估计的问题,可以用来近似它。基于CT的COVID-19检测和COVID-19的严重程度检测基准的实验证明了我们方法的有效性。

Successful data representation is a fundamental factor in machine learning based medical imaging analysis. Deep Learning (DL) has taken an essential role in robust representation learning. However, the inability of deep models to generalize to unseen data can quickly overfit intricate patterns. Thereby, we can conveniently implement strategies to aid deep models in discovering useful priors from data to learn their intrinsic properties. Our model, which we call a dual role network (DRN), uses a dependency maximization approach based on Least Squared Mutual Information (LSMI). The LSMI leverages dependency measures to ensure representation invariance and local smoothness. While prior works have used information theory measures like mutual information, known to be computationally expensive due to a density estimation step, our LSMI formulation alleviates the issues of intractable mutual information estimation and can be used to approximate it. Experiments on CT based COVID-19 Detection and COVID-19 Severity Detection benchmarks demonstrate the effectiveness of our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源