论文标题
关于$ W^+w^ - $ scattering的fermion循环的相关性
On the relevance of fermion loops for $W^+W^-$ scattering
论文作者
论文摘要
我们研究有效理论框架内对向量玻色子散射(尤其是$ W^+W^ - 弹性散射)的一环校正。通过中间电造片重新散落在高能量的情况下占主导地位,作为这些中间玻色子的相应环图,如$ \ nathcal {o}(s^2/v^4)$在手性有效计数中。在本文中,我们将注意力集中在fermion-loop校正上,这些校正像$ \ Mathcal {o}(M _ {\ rm fer}^2 s/v^4)$在Higgs有效野外理论(heft)中。尽管相对于玻色子回路,这种依赖性被正式抑制了$ s \ to \ infty $,但大型顶部的质量可以导致Fermion和Boson循环之间的数值竞争,而几个TEV的中等能量。为了研究这些费米子效应,我们计算了由$ W^+ W^ - \ w^+ w^^ - $弹性散射引起的假想零件,并将其与纯粹的波索克人环的循环贡献进行了比较。我们已经检查了两个振幅对有效耦合的依赖性,从而允许$ \ MATHCAL {O}(10 \%)$偏离SM。在某些情况下,如预期的那样,玻色子环在顶部和底部校正上占主导地位。但是,我们发现有效参数的空间中有一些区域产生了费米循环的显着(甚至显性)的假想贡献。除了我们对一般重量的结论外,我们还提供了$(5)/SO(4)$最小复合Higgs模型中某些基准点的分析。
We study the one-loop corrections to Vector Boson Scattering (in particular $W^+W^-$ elastic scattering) within the framework of effective theories. Re-scattering via intermediate electroweak would-be-Goldstone bosons dominate at high energies, as the corresponding loop diagrams with these intermediate bosons scale like $\mathcal{O}(s^2/v^4)$ in the chiral effective counting. In the present article, we focus our attention on fermion-loop corrections which scale like $\mathcal{O}(M_{\rm Fer}^2 s/v^4)$ in the Higgs Effective Field Theory (HEFT). Although this dependency is formally suppressed for $s\to\infty$ with respect to that from boson loops, the large top mass can lead to a numerical competition between fermion and boson loops at intermediate energies of the order of a few TeV. For the study of these fermion effects we have calculated the imaginary part induced by loops of top and bottom quarks in $W^+ W^-\to W^+W^-$ elastic scattering and compared it to the loop contributions from purely bosonic loops. We have examined the dependence of both amplitudes on the effective couplings, allowing an $\mathcal{O}(10 \%)$ deviation from the SM. In some cases, boson loops dominate over top and bottom corrections, as expected. However, we find that there are regions in the space of effective parameters that yield a significant -- and even dominant -- imaginary contribution from fermion loops. In addition to our conclusions for the general HEFT, we also provide analyses particularized to some benchmark points in the $SO(5)/SO(4)$ Minimal Composite Higgs Model.