论文标题
PC-MRI的物理信息压缩感:逆向Navier-Stokes问题
Physics-informed compressed sensing for PC-MRI: an inverse Navier-Stokes problem
论文作者
论文摘要
我们为从噪声和稀疏的相位对比度磁共振信号重建速度场的重建物理学压缩感测(PICS)方法。该方法解决了逆向纳维尔的边界值问题,这使我们可以共同重建和分段速度场,同时推断隐藏量(例如流体力压力和壁剪应力)。使用贝叶斯框架,我们通过以高斯随机字段的形式引入有关未知参数的先验信息来使问题进行正规化。使用Navier-Stokes问题,基于能量的分割功能,并要求重建与$ K $ -SPACE信号一致,从而更新了此先前信息。我们创建了一种解决此重构问题的算法,并通过收敛喷嘴测试流量的噪声和稀疏$ K $ -SPACE信号。我们发现,该方法能够从稀疏采样(15%$ k $ - 空间覆盖范围),低($ \ sim $ 4 $ 10 $)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)信号(SNR)和重建的速度范围($ sne $ sn)(100%$ k-k-k-k-k-k-k-k-k y-sne)进行比较(100%$ k-k- k-k-k-k-k-K-相同的流程。
We formulate a physics-informed compressed sensing (PICS) method for the reconstruction of velocity fields from noisy and sparse phase-contrast magnetic resonance signals. The method solves an inverse Navier-Stokes boundary value problem, which permits us to jointly reconstruct and segment the velocity field, and at the same time infer hidden quantities such as the hydrodynamic pressure and the wall shear stress. Using a Bayesian framework, we regularize the problem by introducing a priori information about the unknown parameters in the form of Gaussian random fields. This prior information is updated using the Navier-Stokes problem, an energy-based segmentation functional, and by requiring that the reconstruction is consistent with the $k$-space signals. We create an algorithm that solves this reconstruction problem, and test it for noisy and sparse $k$-space signals of the flow through a converging nozzle. We find that the method is capable of reconstructing and segmenting the velocity fields from sparsely-sampled (15% $k$-space coverage), low ($\sim$$10$) signal-to-noise ratio (SNR) signals, and that the reconstructed velocity field compares well with that derived from fully-sampled (100% $k$-space coverage) high ($>40$) SNR signals of the same flow.