论文标题

用于传播自旋波的有限元元素动态矩阵方法:延伸至任意间距和厚度的单层和多层

Finite-element dynamic-matrix approach for propagating spin waves: Extension to mono- and multilayers of arbitrary spacing and thickness

论文作者

Körber, Lukas, Hempel, Alexander, Otto, Andreas, Gallardo, Rodolfo, Henry, Yves, Lindner, Jürgen, Kákay, Attila

论文摘要

在我们最近的工作中[AIP ADV。 11,095006],我们提出了一种有效的数值方法,用于计算带有翻译不变的平衡磁化的波导中的自旋波的分散和空间模式曲线。使用有限元方法(FEM),可以模拟任意形状的二维波导横截面,但只有有限的大小。在这里,我们将fem传播的波动 - 马trix方法从有限的波导到无限扩展的任意间距和厚度的无限延伸单层和多层次的重要实际情况。为了获得模式轮廓和频率,仅在沿层正常方向定义的一维线跟踪网格上,仅在一维线跟踪网格上求解磁化运动的线性方程。作为多层系统中的重要贡献,我们将层间交换互动引入了我们的FEM方法。随着动态偶极场的计算是本文的主要焦点,我们还扩展了先前呈现的平面波弗雷德金 - 柯勒方法,以计算无限层中自旋波的偶极电势。该方法的主要好处是,它避免了任何非磁性物质的离散化,例如多层中的非磁性垫片。因此,计算工作在间隔厚度上完全独立。此外,它使所得的离散特征值问题稀疏,因此继承了相当低的算术复杂性。作为对我们方法的验证(在开源有限元微型封装四轮驱动中实施),我们介绍了各种系统的结果,并将其与理论预测以及已建立的有限差分数值方法进行比较。我们认为,该方法提供了一种有效且通用的工具来计算分层磁系统中的自旋波散。

In our recent work [AIP Adv. 11, 095006], we presented an efficient numerical method to compute dispersions and spatial mode profiles of spin waves propagating in waveguides with translationally invariant equilibrium magnetization. Using a finite-element method (FEM) allowed to model two-dimensional waveguide cross sections of arbitrary shape but only finite size. Here, we extend our FEM propagating-wave dynamic-matrix approach from finite waveguides to the important practical cases of infinitely-extended mono- and multilayers of arbitrary spacing and thickness. To obtain the mode profiles and frequencies, the linearized equation of motion of magnetization is solved as an eigenvalue problem only on a one-dimensional line-trace mesh, defined along the normal direction of the layers. Being an important contribution in multilayer systems, we introduce interlayer-exchange interaction into our FEM approach. With the calculation of dynamic dipolar fields being the main focus of this paper, we also extend the previously presented plane-wave Fredkin-Koehler method to calculate the dipolar potential of spin waves in infinite layers. The major benefit of this method is that it avoids the discretization of any non-magnetic material, such as non-magnetic spacers in multilayers. Therefore, the computational effort becomes completely independent on the spacer thicknesses. Furthermore, it keeps the resulting discretized eigenvalue problem sparse, which therefore, inherits a comparably low arithmetic complexity. As a validation of our method (implemented into the open-source finite-element micromagnetic package TetraX), we present results for various systems and compare them with theoretical predictions as well as with established finite-difference numerical methods. We believe this method offers an efficient and versatile tool to calculate spin-wave dispersions in layered magnetic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源