论文标题
反射多边形的网络连接
The web of reflexive polygons is connected
论文作者
论文摘要
我们通过引入曲折莫里理论的几何学观点来讨论有关晶格多型的各种网络连接性的问题。为此,我们根据某些晶格点提供了曲ic sarkisov链接的组合描述,我们称之为原始生成集。在两个维度中,描述进一步转化为晶格多边形的语言。作为一个应用程序,我们通过两种方式(建设性和非构造性)证明了反身或终端多边形,即使不采用模量单模型等价,也可以通过包含关系形成单个连接的Web。
We discuss the problem on the connectedness of various webs of lattice polytopes by introducing a geometric point of view from the toric Mori theory. To this end, we provide a combinatorial description of toric Sarkisov links in terms of certain sets of lattice points, which we call primitive generating sets. In two dimensions, the description is further translated into the language of lattice polygons. As an application, we prove in two ways (constructive and non-constructive) that reflexive or terminal polygons form a single connected web via inclusion relations even without taking modulo unimodular equivalences.