论文标题

多元几何布朗运动的截止稳定性

Cutoff stability of multivariate geometric Brownian motion

论文作者

Barrera, G., Högele, M. A., Pardo, J. C.

论文摘要

本文建立了三个用于多变量(Hurwitz)稳定的几何布朗尼运动的三个统计数量的临界融合或突然收敛:自相关函数,当前状态及其退化限制度量之间的瓦斯泰因距离,最终,使用反合量的量子量,均可在跨量的速率之间进行跨性别率,从而产生了跨量的速率,从而构成了跨量的速度。 Borel-cantelli引理。在同时具有对角的漂移和波动率矩阵的情况下,我们获得了均方根的完整表示,并得出了非平凡,充分和必要的均方根稳定性条件,其中包括挥发性矩阵光谱的所有真实和虚构部分。

This article establishes cutoff convergence or abrupt convergence of three statistical quantities for multivariate (Hurwitz) stable geometric Brownian motion: the autocorrelation function, the Wasserstein distance between the current state and its degenerate limiting measure, and, finally, anti-concentration probabilities, which yield a fine-tuned trade-off between almost sure rates and the respective integrability of the random modulus of convergence using a quantitative Borel--Cantelli Lemma. We obtain in case of simultaneous diagonalizable drift and volatility matrices a complete representation of the mean square and derive nontrivial, sufficient and necessary mean square stability conditions, which include all real and imaginary parts of the volatility matrices' spectra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源