论文标题

合并数值重新归一化组和中间表示,以压缩两点和三点相关器

Merging numerical renormalization group and intermediate representation to compactify two- and three-point correlators

论文作者

Huber, Sebastian, Wallerberger, Markus, Worm, Paul, Held, Karsten

论文摘要

如今,多体理论的先锋是处理N点Green功能的全频动力学,其n比两个高于两个。从数值上讲,即使使用离散的假想时间Matsubara频率,这些对象也很容易成为内存瓶颈。在这里,我们使用中间表示(IR)按照数值重量化组(NRG)数据直接在真实频率轴上压缩两点绿色的函数和三点费米式顶点。当将IR重建信号与原始NRG数据进行比较时,我们从经验上观察到相对误差的上限,并证明可能是IR补充。

The vanguard of many-body theory is nowadays dealing with the full frequency dynamics of n-point Green's functions for n higher than two. Numerically, these objects easily become a memory bottleneck, even when working with discrete imaginary-time Matsubara frequencies. Here, we use the intermediate representation (IR) to compactify the two-point Green's function and three-point Fermion-Bose vertex directly on the real frequency axis, on the basis of numerical renormalization group (NRG) data. We empirically observe an upper bound of the relative error when comparing the IR reconstructed signal with the original NRG data, and demonstrate that a IR compacification is possible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源