论文标题
真实世界视觉机器人操纵的随机到典型模型预测控制
Randomized-to-Canonical Model Predictive Control for Real-world Visual Robotic Manipulation
论文作者
论文摘要
最近,许多作品探索了SIM到真实传递的可传递视觉模型预测性控制(MPC)。但是,这样的作品仅限于单次转移,在该转移中,必须收集一次现实世界的数据才能执行SIM到实现的转移,这仍然是人类在将模拟中学到的模型转移到现实世界中新领域的大量努力。为了减轻这个问题,我们首先提出了一个新型的模型学习框架,称为Kalman随机到典型模型(KRC模型)。该框架能够从随机图像中提取与任务相关的内在特征及其动力学。然后,我们建议使用KRC模型的Kalman随机到典型模型预测控制(KRC-MPC)作为零射击的SIM到真实转移的视觉MPC。通过仿真和现实世界中的机器人手以及模拟中的块配合任务,通过机器人手通过阀旋转任务来评估我们方法的有效性。实验结果表明,KRC-MPC可以以零拍的方式应用于各种真实域和任务。
Many works have recently explored Sim-to-real transferable visual model predictive control (MPC). However, such works are limited to one-shot transfer, where real-world data must be collected once to perform the sim-to-real transfer, which remains a significant human effort in transferring the models learned in simulations to new domains in the real world. To alleviate this problem, we first propose a novel model-learning framework called Kalman Randomized-to-Canonical Model (KRC-model). This framework is capable of extracting task-relevant intrinsic features and their dynamics from randomized images. We then propose Kalman Randomized-to-Canonical Model Predictive Control (KRC-MPC) as a zero-shot sim-to-real transferable visual MPC using KRC-model. The effectiveness of our method is evaluated through a valve rotation task by a robot hand in both simulation and the real world, and a block mating task in simulation. The experimental results show that KRC-MPC can be applied to various real domains and tasks in a zero-shot manner.