论文标题

替代的一致性谐波系列第2部分 - 融合加速度

The alternate congruo-harmonic series Part 2 -- Accelerations of convergence

论文作者

Pouvreau, David

论文摘要

对于严格积极整数的每对(p; q),``替代的一致性 - 谐波''序列由(p; q)参数为参数,其一般术语为(-1)^k/(pk+q),infrra-linearearearearearearearearearlialearearearearlialearearearearelearearlialearearearearlialeareareleartial andereal且非常缓慢。基于该系列其余部分的一般部分扩展,本文详细阐述了一个算法,该算法加速了其收敛。比较了这些算法产生的序列的收敛速度。进行了精确的渐近分析,该分析揭示了促进融合的可能性(但具有无限的速度多样性)或线性(具有与(P; Q)相对(P; Q)相对普遍的收敛速率),或通过序列提取。还讨论了几个开放问题,这些问题涉及如此构建的算法的相对``性能''以及其中一些可能的最优性。

For every couple (p;q) of strictly positive integers, the `` alternate congruo-harmonic '' series parametrized by (p;q), whose general term is (-1)^k/(pk+q), converges infra-linearly and very slowly. On the basis of a generalized continued fraction expansion of the partial rest of the series, this paper elaborates a family of algorithms which accelerate its convergence. The convergence speed of the sequences generated by these algorithms are compared. A precise asymptotic analysis is conducted, which reveals the possibility to accelerate the convergence either infra-linearly (but with an infinite diversity of possible speeds), or linearly (with a convergence rate that appears universal relatively to (p;q)), or super-linearly, by means of sequences extractions. Several open problems are also discussed, which concern the relative `` performance '' of the algorithms thus built and the possible optimality of some of them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源