论文标题
正交和符号随机张量模型的二元性
Duality of Orthogonal and Symplectic Random Tensor Models
论文作者
论文摘要
$ o(n)$和$ sp(n)$的组与分析延续相关,负于$ n $,$ o(-n)\ simeq sp(n)$的负值。已经研究了用于矢量模型的二元性,$ so(n)$和$ sp(n)$量表理论以及一些随机矩阵集合。我们将这种二元性扩展到任意顺序$ d $的实际随机张量模型,而没有对称性的对称性,并且具有四分之一的相互作用。 $ n $ to $ -n $二元性显示可通过图表来保存分区功能,自由能和连接的两个点函数的扰动理论中的所有订单。
The groups $O(N)$ and $Sp(N)$ are related by an analytic continuation to negative values of $N$, $O(-N)\simeq Sp(N)$. This duality has been studied for vector models, $SO(N)$ and $Sp(N)$ gauge theories, as well as some random matrix ensembles. We extend this duality to real random tensor models of arbitrary order $D$ with no symmetry under permutation of the indices and with quartic interactions. The $N$ to $-N$ duality is shown to hold graph by graph to all orders in perturbation theory for the partition function, the free energy and the connected two point function.