论文标题

DBN-MIX:使用双边混合增加的培训双分支网络进行长尾视觉识别

DBN-Mix: Training Dual Branch Network Using Bilateral Mixup Augmentation for Long-Tailed Visual Recognition

论文作者

Baik, Jae Soon, Yoon, In Young, Choi, Jun Won

论文摘要

人们对从长尾班级分布中学习的挑战性视觉感知任务越来越兴趣。培训数据集中的极端类不平衡使模型偏向于识别多数类数据而不是少数族裔类数据。此外,少数族裔样本中缺乏多样性使得很难找到良好的代表。在本文中,我们提出了一种有效的数据增强方法,称为双边混合量增强,可以提高长尾视觉识别的性能。双边混合增强功能结合了由均匀采样器和重新平衡采样器产生的两个样本,并增强了培训数据集,以增强少数类别的表示学习。我们还使用班级温度缩放来减少分类器偏置,这在训练阶段在每个类别的尺度上都不同。我们将这两个想法应用于双分支网络(DBN)框架,该框架提出了一种新模型,该型号称为双支混音(DBN-MIX)。对流行的长尾视觉识别数据集进行的实验表明,DBN-MIX在基线上显着提高了性能,并且所提出的方法在某些类别的基准中实现了最先进的性能。

There is growing interest in the challenging visual perception task of learning from long-tailed class distributions. The extreme class imbalance in the training dataset biases the model to prefer recognizing majority class data over minority class data. Furthermore, the lack of diversity in minority class samples makes it difficult to find a good representation. In this paper, we propose an effective data augmentation method, referred to as bilateral mixup augmentation, which can improve the performance of long-tailed visual recognition. The bilateral mixup augmentation combines two samples generated by a uniform sampler and a re-balanced sampler and augments the training dataset to enhance the representation learning for minority classes. We also reduce the classifier bias using class-wise temperature scaling, which scales the logits differently per class in the training phase. We apply both ideas to the dual-branch network (DBN) framework, presenting a new model, named dual-branch network with bilateral mixup (DBN-Mix). Experiments on popular long-tailed visual recognition datasets show that DBN-Mix improves performance significantly over baseline and that the proposed method achieves state-of-the-art performance in some categories of benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源