论文标题

框架简介

Introduction to Framed Correspondences

论文作者

Hoyois, Marc, Opdan, Nikolai

论文摘要

我们概述了动机同义理论中构成对应的理论。带有框架转移的动机空间是$ e _ {\ infty} $ - 经典同型理论中的动机同义理论的类似物,尤其是它们提供了无限$ \ mathbb {p}^1 $ loop Space的代数描述。我们将讨论该理论的基础(遵循Voevodsky,Garkusha,Panin,Ananyevskiy和Neshitov),一些应用,例如计算动机领域的无限循环空间以及代数COBORDISM的无限循环空间(之后,Elmanto,Hoyois,Khan,Khan,Sosnilo和Yakerson和Yakersors和Yakersors和Yakersors和Yakersors和Yakersors)

We give an overview of the theory of framed correspondences in motivic homotopy theory. Motivic spaces with framed transfers are the analogue in motivic homotopy theory of $E_{\infty}$-spaces in classical homotopy theory, and in particular they provide an algebraic description of infinite $\mathbb{P}^1$-loop spaces. We will discuss the foundations of the theory (following Voevodsky, Garkusha, Panin, Ananyevskiy, and Neshitov), some applications such as the computations of the infinite loop spaces of the motivic sphere and of algebraic cobordism (following Elmanto, Hoyois, Khan, Sosnilo, and Yakerson), and some open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源