论文标题
Lévy模型可根据有效的计算
Lévy models amenable to efficient calculations
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In our previous publications (IJTAF 2019, Math. Finance 2020), we introduced a general class of SINH-regular processes and demonstrated that efficient numerical methods for the evaluation of the Wiener-Hopf factors and various probability distributions (prices of options of several types) in Lévy models can be developed using only a few general properties of the characteristic exponent $ψ$. Essentially all popular Lévy processes enjoy these properties. In the present paper, we define classes of Stieltjes-Lévy processes (SL-processes) as processes with completely monotone Lévy densities of positive and negative jumps, and signed Stieltjes-Lévy processes (sSL-processes) as processes with densities representable as differences of completely monotone densities. We demonstrate that 1) all crucial properties of $ψ$ are consequences of the representation $ψ(ξ)=(a^+_2ξ^2-ia^+_1ξ)ST(\cG_+)(-iξ)+(a^-_2ξ^2+ia^-_1ξ)ST(\cG_-)(iξ)+(\sg^2/2)ξ^2-iμξ$, where $ST(\cG)$ is the Stieltjes transform of the (signed) Stieltjes measure $\cG$ and $a^\pm_j\ge 0$; 2) essentially all popular processes other than Merton's model and Meixner processes areSL-processes; 3) Meixner processes are sSL-processes; 4) under a natural symmetry condition, essentially all popular classes of Lévy processes are SL- or sSL-subordinated Brownian motion.