论文标题
部分可观测时空混沌系统的无模型预测
Ensemble feature selection with clustering for analysis of high-dimensional, correlated clinical data in the search for Alzheimer's disease biomarkers
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Healthcare datasets often contain groups of highly correlated features, such as features from the same biological system. When feature selection is applied to these datasets to identify the most important features, the biases inherent in some multivariate feature selectors due to correlated features make it difficult for these methods to distinguish between the important and irrelevant features and the results of the feature selection process can be unstable. Feature selection ensembles, which aggregate the results of multiple individual base feature selectors, have been investigated as a means of stabilising feature selection results, but do not address the problem of correlated features. We present a novel framework to create feature selection ensembles from multivariate feature selectors while taking into account the biases produced by groups of correlated features, using agglomerative hierarchical clustering in a pre-processing step. These methods were applied to two real-world datasets from studies of Alzheimer's disease (AD), a progressive neurodegenerative disease that has no cure and is not yet fully understood. Our results show a marked improvement in the stability of features selected over the models without clustering, and the features selected by these models are in keeping with the findings in the AD literature.