论文标题

Biotabqa:生物医学表问题的指导学习回答

BioTABQA: Instruction Learning for Biomedical Table Question Answering

论文作者

Luo, Man, Saxena, Sharad, Mishra, Swaroop, Parmar, Mihir, Baral, Chitta

论文摘要

表问题回答(TQA)是一项重要但不足的任务。大多数现有的QA数据集都采用非结构化文本格式,只有很少的数据集使用表作为上下文。据我们所知,在生物医学领域中,没有任何TQA数据集存在经常用于提供信息的生物医学领域。在本文中,我们首先使用22个模板和有关鉴别诊断的生物医学教科书中的上下文来策划一个问题,以回答数据集Biotabqa。 Biotabqa不仅可以用来教授模型如何从表中回答问题,还可以评估模型如何推广到看不见的问题,这是生物医学应用的重要情况。为了实现概括评估,我们将模板分为17个培训和5个交叉任务评估。然后,我们使用BioTabqa上的单个和多任务学习开发两个基线。此外,我们探索教学学习,这是一种显示出令人印象深刻的概括性能的技术。实验结果表明,在各种评估设置中,我们的指导调节模型平均比单一和多任务基准均优于单一和多任务基准,更重要的是,在交叉任务上,指令调整的模型优于基准〜5%。

Table Question Answering (TQA) is an important but under-explored task. Most of the existing QA datasets are in unstructured text format and only few of them use tables as the context. To the best of our knowledge, none of TQA datasets exist in the biomedical domain where tables are frequently used to present information. In this paper, we first curate a table question answering dataset, BioTABQA, using 22 templates and the context from a biomedical textbook on differential diagnosis. BioTABQA can not only be used to teach a model how to answer questions from tables but also evaluate how a model generalizes to unseen questions, an important scenario for biomedical applications. To achieve the generalization evaluation, we divide the templates into 17 training and 5 cross-task evaluations. Then, we develop two baselines using single and multi-tasks learning on BioTABQA. Furthermore, we explore instructional learning, a recent technique showing impressive generalizing performance. Experimental results show that our instruction-tuned model outperforms single and multi-task baselines on an average by ~23% and ~6% across various evaluation settings, and more importantly, instruction-tuned model outperforms baselines by ~5% on cross-tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源