论文标题
自由浮动双臂空间操纵器的运动计划的学习系统,向非合作对象
A Learning System for Motion Planning of Free-Float Dual-Arm Space Manipulator towards Non-Cooperative Object
论文作者
论文摘要
近年来,太空中出现了不合作的物体,例如失败的卫星和太空垃圾。这些对象通常由自由浮动双臂空间操纵器操作或收集。由于消除了建模和手动参数调整的困难,强化学习(RL)方法在空间操纵器的轨迹计划中显示了一个更有希望的标志。尽管以前的研究证明了它们的有效性,但不能应用于跟踪旋转未知的动态目标(非合作对象)。在本文中,我们提出了一种学习系统,用于将自由浮动双臂空间操纵器(FFDASM)的运动计划朝向非合作对象。具体而言,我们的方法由两个模块组成。模块I意识到了大型目标空间内两个最终效应的多目标轨迹计划。接下来,模块II作为输入非合件对象的点云来估计运动属性,然后可以预测目标点在非合作对象上的位置。我们利用模块I和模块II的组合成功地跟踪具有未知常规性的旋转对象上的目标点。此外,实验还证明了我们学习系统的可扩展性和概括。
Recent years have seen the emergence of non-cooperative objects in space, like failed satellites and space junk. These objects are usually operated or collected by free-float dual-arm space manipulators. Thanks to eliminating the difficulties of modeling and manual parameter-tuning, reinforcement learning (RL) methods have shown a more promising sign in the trajectory planning of space manipulators. Although previous studies demonstrate their effectiveness, they cannot be applied in tracking dynamic targets with unknown rotation (non-cooperative objects). In this paper, we proposed a learning system for motion planning of free-float dual-arm space manipulator (FFDASM) towards non-cooperative objects. Specifically, our method consists of two modules. Module I realizes the multi-target trajectory planning for two end-effectors within a large target space. Next, Module II takes as input the point clouds of the non-cooperative object to estimate the motional property, and then can predict the position of target points on an non-cooperative object. We leveraged the combination of Module I and Module II to track target points on a spinning object with unknown regularity successfully. Furthermore, the experiments also demonstrate the scalability and generalization of our learning system.