论文标题

非平衡目的的树木和森林:图形表示简介

Trees and forests for nonequilibrium purposes: an introduction to graphical representations

论文作者

Khodabandehlou, Faezeh, Maes, Christian, Netočný, Karel

论文摘要

使用本地详细的平衡,我们根据物理上可解释的树式增气而重写了Markov跳跃过程的固定分布的Kirchhoff公式。我们使用该路径空间整合的树博化来得出接近平衡的McLennan-Tree表征,并获得了大型驱动器渐近方面的固定分布的响应公式。获得电流和交通的图形表达式,从而研究了各种渐近方案。最后,我们介绍了矩阵 - 孔定理如何给出准潜电的表示,例如用于计算非平衡热物理中的过量工作和热量。各种示例说明并解释了图元素和构造。

Using local detailed balance we rewrite the Kirchhoff formula for stationary distribution of Markov jump processes in terms of a physically interpretable tree-ensemble. We use that arborification of path-space integration to derive a McLennan-tree characterization close to equilibrium, as well as to obtain response formula for the stationary distribution in the asymptotic regime of large driving. Graphical expressions of currents and of traffic are obtained, allowing the study of various asymptotic regimes. Finally, we present how the matrix-forest theorem gives a representation of quasi-potentials, as used e.g. for computing excess work and heat in nonequilibrium thermal physics. A variety of examples illustrate and explain the graph elements and constructions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源