论文标题

密集的老师:半监督对象检测的密集伪标签

Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection

论文作者

Zhou, Hongyu, Ge, Zheng, Liu, Songtao, Mao, Weixin, Li, Zeming, Yu, Haiyan, Sun, Jian

论文摘要

迄今为止,最强大的半监督对象检测器(SS-OD)基于伪盒,该盒子需要一系列具有微调超参数的后处理。在这项工作中,我们建议用稀疏的伪盒代替稀疏的伪盒,作为伪标签的一种团结而直接的形式。与伪盒相比,我们的密集伪标签(DPL)不涉及任何后处理方法,因此保留了更丰富的信息。我们还引入了一种区域选择技术,以突出关键信息,同时抑制密集标签所携带的噪声。我们将利用DPL作为密集老师的拟议的SS-OD算法命名。在可可和VOC上,密集的老师与基于伪盒的方法相比,在各种设置下表现出卓越的表现。

To date, the most powerful semi-supervised object detectors (SS-OD) are based on pseudo-boxes, which need a sequence of post-processing with fine-tuned hyper-parameters. In this work, we propose replacing the sparse pseudo-boxes with the dense prediction as a united and straightforward form of pseudo-label. Compared to the pseudo-boxes, our Dense Pseudo-Label (DPL) does not involve any post-processing method, thus retaining richer information. We also introduce a region selection technique to highlight the key information while suppressing the noise carried by dense labels. We name our proposed SS-OD algorithm that leverages the DPL as Dense Teacher. On COCO and VOC, Dense Teacher shows superior performance under various settings compared with the pseudo-box-based methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源