论文标题

19009年大流行的时空模式:数据分析的大流行动力学推断

Spatiotemporal patterns of Covid-19 pandemic in India: Inferences of pandemic dynamics from data analysis

论文作者

Mishra, Preet, Singh, R. K. Brojen

论文摘要

大规模COVID-19大流行数据的建模和分析可以得出有关其疾病传播的动态和特征的推断。然后,这些推论可以与上下文因素相关,例如人口密度,战略干预措施的影响,异质性疾病传播等以及此类验证的推论可以作为设计随后的缓解策略的先例。在这项工作中,我们使用增长功能拟合程序和谐波分析方法对印度上下文中的Covid-19大流行数据进行了分析。我们与数据相适应的生长功能的结果表明,生长函数参数对感染人群的生长非常敏感,表明锁定策略的积极影响,拐点的鉴定以及疾病扩散的几乎同步统计特征。数据的谐波分析表明,由于控制策略的同时实施,全国各地的同步事件特征。但是,如果一个人分析来自印度每个州的数据,则可以在全国范围内看到各种形式的行进波。因此,人们需要不时进行这些分析,以了解任何控制策略的有效性,并仔细研究疾病的传播以设计所需的缓解策略。

Modeling and analysis of the large scale Covid-19 pandemic data can yield inferences about it's dynamics and characteristics of disease propagation. These inferences can then be correlated with contextual factors like population density, effects of strategic interventions, heterogeneous disease propagation etc, and such set of validated inferences can serve as precedents for designing of subsequent mitigation strategies. In this work, we present the analysis of Covid-19 pandemic data in Indian context using growth functions fitting procedure and harmonic analysis method. Our results of growth function fitting to the data indicate that the growth function parameters are quite sensitive to the growth of the infected population indicating positive impact of lockdown strategy, identification of inflection point and nearly synchronous statistical features of disease spreading. The harmonic analysis of the data shows the countrywide synchronous incident features due to simultaneous implementation of control strategies. However, if one analyzes the data from each state of the India, one can see various forms of travelling waves in the countrywide wave pattern. Hence, one needs to do these analysis from time to time to understand the effectiveness of any control strategy and to closely look at the disease propagation to devise the required type of mitigation strategies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源