论文标题

二维湍流中刚性纤维的对齐和翻转的随机模型

Stochastic model for the alignment and tumbling of rigid fibres in two-dimensional turbulent shear flow

论文作者

Campana, Lorenzo, Bossy, Mireille, Bec, Jeremie

论文摘要

当局部应变波动时,由各向异性湍流转运的非球形颗粒优先与平均剪切和间歇性滚动。这里研究了这种复杂的行为,用于嵌入具有均匀剪切的二维湍流中的惯性,棒状颗粒。引入了杆角动力学的拉格朗日随机模型,并将其与直接数值模拟的结果进行了比较。该模型在于将短相关的随机分量与稳定的大规模平均剪切相关,从而可以通过分析进行集成。为了重现数值获得的单时间取向统计量,发现人们必须正确地说明平均剪切的综合作用,各向异性速度梯度波动,以及在存在偏向lagangian lagangian lagangian统计流程中存在持久的旋转结构。然后,该模型用于解决两次统计信息。通过引入杆展开的角度的固定概率通量,将翻滚速率的概念扩展到扩散动力学。发现该模型可以再现平均剪切对纤维角度增量的平均值和方差的长期影响。尽管如此,在中间时间,它并没有重现在数字中观察到的复杂行为:展开的角度与Lévy步行非常相似,并具有显示中间幂律尾巴的增量分布。

Non-spherical particles transported by an anisotropic turbulent flow preferentially align with the mean shear and intermittently tumble when the local strain fluctuates. Such an intricate behaviour is here studied for inertialess, rod-shaped particles embedded in a two-dimensional turbulent flow with homogeneous shear. A Lagrangian stochastic model for the rods angular dynamics is introduced and compared to the results of direct numerical simulations. The model consists in superposing a short-correlated random component to the steady large-scale mean shear, and can thereby be integrated analytically. To reproduce the single-time orientation statistics obtained numerically, it is found that one has to properly account for the combined effect of the mean shear, for anisotropic velocity gradient fluctuations, and for the presence of persistent rotating structures in the flow that bias Lagrangian statistics. The model is then used to address two-time statistics. The notion of tumbling rate is extended to diffusive dynamics by introducing the stationary probability flux of the rods unfolded angle. The model is found to reproduce the long-term effects of an average shear on the mean and the variance of the fibres angular increment. Still, it does not reproduce an intricate behaviour observed in numerics for intermediate times: the unfolded angle is there very similar to a Lévy walk with distributions of increments displaying intermediate power-law tails.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源