论文标题

双重打结和拉格朗日一致性的障碍物

Doubly slice knots and obstruction to Lagrangian concordance

论文作者

Chantraine, Baptiste, Legout, Noémie

论文摘要

在此简短的说明中,我们观察到,Eliashberg和Polterovitch的结果允许将双重切片属用作传统结的障碍物,使其成为琐碎的传说中的一致性,并具有最大的Thurston-bennequin Invariant。这允许在椒盐脆饼结p(3,-3,-m)中妨碍一致性。这些示例令人感兴趣,因为Legendrian接触同源代数不能用来阻碍这种一致性。

In this short note we observe that a result of Eliashberg and Polterovitch allows to use the doubly slice genus as an obstruction for a Legendrian knot to be a slice of a concordance from the trivial Legendrian knot with maximal Thurston-Bennequin invariant to itself. This allows to obstruct concordances from the Pretzel knot P(3,-3,-m) when m > 3 to the unknot. Those examples are of interest because the Legendrian contact homology algebra cannot be used to obstruct such a concordance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源