论文标题
恒星信封的冲击突破:相对论极限
Shock Breakout from Stellar Envelopes: The relativistic limit
论文作者
论文摘要
我们计算出从恒星边缘出现相对论冲击波后观察到的光度和频谱。冲击波在$ 0.6 <γ_\ text {sh}β_\ text {sh} $中,其中$γ_\ text {sh} $是冲击lorentz因子和$β_\ text {sh} $是其相关的速度降低的速度,允许速度超出$ $ $ $ \ uther $ $ \ uther $ ke,use postron postron a postron positron to positron popitron positron postron positron positron postron to a positron position $ ke,成对。对将电子散射的光学深度显着增加,并通过光子产生调节温度,从而在逃避发射中产生独特的观察性特征。假设有静电平衡,我们在冲击通道后立即发现了立即在包膜中的温度和配对密度曲线的分析表达式,并在膨胀阶段计算发射。我们的分析表明,在成对的负载区域中,光子是在$ \ sim 200 $ keV的大致均匀的休息框架能量下产生的,并加强了先前的估计,即电击突破信号将被检测到短的能量$γ$ ray光子的短爆发,然后是X射线发射的较长阶段。我们使用$γ$ - 射线爆发持续时间,辐射温度和$γ$ - 雷 - 雷 - 雷 - 各向同性等效能量之间的封闭关系来测试我们的模型,并使用$γ$ ray爆发持续时间之间的封闭关系来测试我们的模型,并发现某些事件与相对论性的冲击突破模型一致。最后,我们将结果应用于白矮星和中子星的爆炸,并发现典型的IA类型Supernovae Emit $ \ sim 10^{41} $ ERG的形式为$ \ sim 1 $ MEV光子。
We calculate the observed luminosity and spectrum following the emergence of a relativistic shock wave from a stellar edges. Shock waves propagating at $0.6<Γ_\text{sh}β_\text{sh}$, where $Γ_\text{sh}$ is the shock Lorentz factor and $β_\text{sh}$ is its associated reduced velocity, heat the stellar envelope to temperatures exceeding $\sim 50$ keV, allowing for a vigorous production of electron and positron pairs. Pairs significantly increase the electron scattering optical depth and regulate the temperature through photon generation, producing distinct observational signatures in the escaping emission. Assuming Wien equilibrium, we find analytic expressions for the temperature and pair density profiles in the envelope immediately after shock passage, and compute the emission during the expansion phase. Our analysis shows that in pair loaded regions, photons are produced at a roughly uniform rest frame energy of $\sim 200$ keV, and reinforces previous estimates that the shock breakout signal will be detected as a short burst of energetic $γ$-ray photons, followed by a longer phase of X-ray emission. We test our model on a sample of low-luminosity gamma ray bursts using a closure relation between the $γ$-ray burst duration, the radiation temperature and the $γ$-ray isotropic equivalent energy, and find that some of the events are consistent with the relativistic shock breakout model. Finally, we apply our results to explosions in white dwarfs and neutron stars, and find that typical type Ia supernovae emit $\sim 10^{41}$ erg in the form of $\sim 1$ MeV photons.