论文标题
由自发对称性驱动的物体的统计数据闯入可逆方向
Statistics for an object actively driven by spontaneous symmetry breaking into reversible directions
论文作者
论文摘要
通过主动驾驶机制来实现原本被动物体的推进。我们专注于主动驱动方向受到自发对称性断裂的情况。在我们的情况下,将维持这个方向,直到另外随机力量逆转足够大的冲动为止。可以通过自propelled液滴来提供示例,从而使细菌随机地逆转其推进方向或非极性振动料斗。主动强迫的大小被认为是恒定的,我们包括惯性贡献的效果。有趣的是,这种情况可以正式映射到(干燥,固体)库仑摩擦下的随机运动,但是,摩擦参数为负。扩散系数是通过正式映射到暴露于额外排斥三角电位的量子机械谐波振荡器的情况下计算的。结果包括沟渠或双峰速度分布和空间统计数据,显示从最初集中的排列开始时向外传播最大值。
Propulsion of otherwise passive objects is achieved by mechanisms of active driving. We concentrate on cases in which the direction of active drive is subject to spontaneous symmetry breaking. In our case, this direction will be maintained, until a large enough impulse by an additional stochastic force reverses it. Examples may be provided by self-propelled droplets, gliding bacteria stochastically reversing their propulsion direction, or nonpolar vibrated hoppers. The magnitude of active forcing is regarded as constant, and we include the effect of inertial contributions. Interestingly, this situation can formally be mapped to stochastic motion under (dry, solid) Coulomb friction, however, with a negative friction parameter. Diffusion coefficients are calculated by formal mapping to the situation of a quantum-mechanical harmonic oscillator exposed to an additional repulsive delta-potential. Results comprise a ditched or double-peaked velocity distribution and spatial statistics showing outward propagating maxima when starting from initially concentrated arrangements.