论文标题

5G NR MIMO接收器中基于机器学习的干扰增白

Machine Learning based Interference Whitening in 5G NR MIMO Receiver

论文作者

Chaudhari, Shailesh, Kwon, HyukJoon

论文摘要

我们解决了从稀疏定位的解调参考信号(DMR)中计算干扰 - 噪声协方差矩阵的问题,用于空间结构域干扰美白(IW)。在用户设备(UE)中,IW过程至关重要,以减轻5G新广播(NR)系统中的共通道干扰。提出了一种基于监督的学习算法来计算协方差矩阵,以最大程度地降低阻滞率(BLER)和美白复杂性的目标。培训了一个单个神经网络,可以在各种干扰场景中选择IW选项进行协方差计算,该方案包括不同的干扰占用,信噪比,信噪比,信噪比,调制订单,编码率,编码率等。在干扰方案中,拟议的算法计算了相互作用的频率blosrix condrol verunly verunly verunly veruerty consutive verusion condrotion fusention corply conderferency contry bys in n y n ybr inb in n y n ybr inb in n y n ybr inb in on Byb in n y n y inb(RB)(RB)in n on Byb(RB)。另一方面,在以噪声为主的情况下,在整个信号带宽中从DMRS计算协方差矩阵。此外,当干扰 - 加上噪声的空间相关性较低时,提出的算法将协方差矩阵近似于对角线矩阵。这种近似使美白的复杂性从$ \ Mathcal {o}(n^3)$减少到$ \ nathcal {o}(n)$,其中$ n $是接收器天线的数量。结果表明,选择算法可以最大程度地减少受过训练和未经训练的干扰方案的螺母。

We address the problem of computing the interference-plus-noise covariance matrix from a sparsely located demodulation reference signal (DMRS) for spatial domain interference whitening (IW). The IW procedure is critical at the user equipment (UE) to mitigate the co-channel interference in 5G new radio (NR) systems. A supervised learning based algorithm is proposed to compute the covariance matrix with goals of minimizing both the block-error rate (BLER) and the whitening complexity. A single neural network is trained to select an IW option for covariance computation in various interference scenarios consisting of different interference occupancy, signal-to-interference ratio, signal-to-noise ratio, modulation order, coding rate, etc. In interference-dominant scenarios, the proposed algorithm computes the covariance matrix using DMRS in one resource block (RB) due to the frequency selectivity of the interference channel. On the other hand, in noise-dominant scenarios, the covariance matrix is computed from DMRS in entire signal bandwidth. Further, the proposed algorithm approximates the covariance matrix into a diagonal matrix when the spatial correlation of interference-plus-noise is low. This approximation reduces the complexity of whitening from $\mathcal{O}(N^3)$ to $\mathcal{O}(N)$ where $N$ is the number of receiver antennas. Results show that the selection algorithm can minimize the BLER under both trained as well as untrained interference scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源