论文标题

扭曲的丘比特双层中的不连贯的隧道和拓扑超导性

Incoherent tunneling and topological superconductivity in twisted cuprate bilayers

论文作者

Haenel, Rafael, Tummuru, Tarun, Franz, Marcel

论文摘要

扭曲高$ t_c $ cuprate超导体的两个单层可以产生手性拓扑状态,并以自发损坏的时间反向对称性$ \ MATHCAL {t} $。出现间隙拓扑阶段所需的重要成分是Cuo $ _2 $平面之间的电子隧穿,其显式形式(在理想的清洁样品中)由原子轨道的对称性决定。然而,在层次中的层间运输上的大量作品表明,无序介导的不一致的隧道的重要性,该隧道逃避了理想化的晶体中存在的对称约束。后者即使是在最干净的单晶样品中通过氧气空缺,分隔了Cuo $ _2 $平面的氧气空位,这些空位是为了实现超导性所需的孔掺杂而引入的。在这里,我们评估了不一致的隧穿对扭曲双层的相图的影响。我们表明,即使是在混乱介导的层间耦合的极限,该模型仍继续支持损坏的$ \ MATHCAL {T} $的完全间隙的拓扑阶段。与该模型相比,具有恒定的动力保护层间耦合的模型,拓扑阶段的范围围绕45 $^\ circ $ twist的范围随着不一致而降低,但对于可能与Bi $ $ $ _2 $ _2 $ $ sr $ _2 $ _2 $ _2 $ _2 $ cacu $ _2 $ _2 $ _2 $ _ $ _ $ _ $ _ $ _^8+δ的参数相关的参数仍然有力地存在。

Twisting two monolayers of a high-$T_c$ cuprate superconductor can engender a chiral topological state with spontaneously broken time reversal symmetry $\mathcal{T}$. A crucial ingredient required for the emergence of a gapped topological phase is electron tunneling between the CuO$_2$ planes, whose explicit form (in an ideal clean sample) is dictated by the symmetry of the atomic orbitals. However, a large body of work on the interlayer transport in cuprates indicates importance of disorder-mediated incoherent tunneling which evades the symmetry constraints present in an idealized crystal. The latter arises even in the cleanest single-crystal samples through oxygen vacancies in layers separating the CuO$_2$ planes, introduced to achieve the hole doping necessary for superconductivity. Here we assess the influence of incoherent tunneling on the phase diagram of a twisted bilayer. We show that the model continues to support a fully gapped topological phase with broken $\mathcal{T}$, even in the limit of disorder-mediated interlayer coupling. Compared to the model with a constant, momentum conserving interlayer coupling, the extent of the topological phase around the 45$^\circ$ twist decreases with increasing incoherence, but remains robustly present for parameters likely relevant to Bi$_2$Sr$_2$CaCu$_2$O$_{8+δ}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源