论文标题

线性和非线性扩散问题中的深度光谱计算

Deep spectral computations in linear and nonlinear diffusion problems

论文作者

Simonnet, Eric, Chekroun, Mickaël D.

论文摘要

我们提出了一个灵活的机器学习框架,用于在适度大的尺寸中解决扩散操作员的特征值问题。我们通过证明我们计算(i)对非自动伴随算子的特征(II)特征(ii)特征材料(III)在频谱中深处计算几个eigenmodes内部(IV)处理非线性特征eigenecenmodes的非自然伴随操作员的能力来改善现有的神经网络(NNS)本素化学者(i)征收特征。为此,我们采用了一种差异方法,包括通过简单的绝热技术和溶液的多估算前馈神经参数化来最大程度地减少涉及雷利商的自然成本功能。据报道,对于与Comping Stepanov流动相关的Kolmogorov操作员对应的10维征值问题,其成功的成功。此外,我们表明该方法允许为具有$ 32 $亚稳态状态的5-d-d-dschrödinger运营商提供准确的征收。此外,我们解决了所谓的Gelfand超级线性问题,具有指数非线性,尺寸$ 4 $,以及用于表现出空腔的非平凡领域。特别是,我们获得了接近奇异溶液的高能量解决方案的NN鉴别。我们强调,这些结果都是使用小型神经网络在经典方法毫无希望的情况下获得的。这项工作为研究Ruelle-Pollicot共振,降低尺寸,非线性特征值问题以及在动态没有潜力时研究稳定性的新观点带来了新的观点。

We propose a flexible machine-learning framework for solving eigenvalue problems of diffusion operators in moderately large dimension. We improve on existing Neural Networks (NNs) eigensolvers by demonstrating our approach ability to compute (i) eigensolutions for non-self adjoint operators with small diffusion (ii) eigenpairs located deep within the spectrum (iii) computing several eigenmodes at once (iv) handling nonlinear eigenvalue problems. To do so, we adopt a variational approach consisting of minimizing a natural cost functional involving Rayleigh quotients, by means of simple adiabatic technics and multivalued feedforward neural parametrisation of the solutions. Compelling successes are reported for a 10-dimensional eigenvalue problem corresponding to a Kolmogorov operator associated with a mixing Stepanov flow. We moreover show that the approach allows for providing accurate eigensolutions for a 5-D Schrödinger operator having $32$ metastable states. In addition, we address the so-called Gelfand superlinear problem having exponential nonlinearities, in dimension $4$, and for nontrivial domains exhibiting cavities. In particular, we obtain NN-approximations of high-energy solutions approaching singular ones. We stress that each of these results are obtained using small-size neural networks in situations where classical methods are hopeless due to the curse of dimensionality. This work brings new perspectives for the study of Ruelle-Pollicot resonances, dimension reduction, nonlinear eigenvalue problems, and the study of metastability when the dynamics has no potential.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源