论文标题

Dynasig-Ml Python软件包:生物分子动力学关系关系的自动化学习

The DynaSig-ML Python package: automated learning of biomolecular dynamics-function relationships

论文作者

Mailhot, Olivier, Major, Francois, Najmanovich, Rafael

论文摘要

摘要:Dynasig-Ml(动力学签名 - 机器学习)Python软件包允许使用大量序列变体的实验度量数据集对生物分子中的3D动态功能 - 功能关系的有效探索。 DynAsig-ML软件包是围绕弹性网络触点模型(ENCOM)构建的,这是第一个也是唯一对序列敏感的粗粒NMA模型,该模型用于生成输入动态签名。从硅突变结构开始,整个管道只能使用几行Python和适度的计算资源运行。在大型生物分子或大量序列变体的情况下,计算密集型步骤也很容易平行。作为示例应用程序,我们使用Dynasig-ML软件包来预测深度​​突变扫描数据中细菌酶VIM-2乳糖酶的进化适应性。可用性和实施​​:Dynasig-Ml是开源软件,网址为https://github.com/gregorpatof/dynasigml软件包联系人:[email protected]

Summary: The DynaSig-ML (Dynamical Signatures - Machine Learning) Python package allows the efficient, user-friendly exploration of 3D dynamics-function relationships in biomolecules, using datasets of experimental measures from large numbers of sequence variants. The DynaSig-ML package is built around the Elastic Network Contact Model (ENCoM), the first and only sequence-sensitive coarse-grained NMA model, which is used to generate the input Dynamical Signatures. Starting from in silico mutated structures, the whole pipeline can be run with just a few lines of Python and modest computational resources. The compute-intensive steps can also easily be parallelized in the case of either large biomolecules or vast amounts of sequence variants. As an example application, we use the DynaSig-ML package to predict the evolutionary fitness of the bacterial enzyme VIM-2 lactamase from deep mutational scan data. Availability and implementation: DynaSig-ML is open source software available at https: //github.com/gregorpatof/dynasigml package Contact: [email protected]

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源