论文标题
量子二聚体模型的高温临界阶段的重新输入效应在方格上
Re-entrance effect in the high-temperature critical phase of the quantum dimer model on the square lattice
论文作者
论文摘要
我们介绍了方格上量子二聚体模型的有限温度相图的量子蒙特卡洛研究。我们使用清扫群集算法,该算法允许精确实现二聚体约束,并补充了相等的定向环移动,该移动允许采样绕组扇区。我们发现一个具有幂律相关性的高温临界阶段延伸至Rokshar-Kivelson Point,在附近发现了在恒定指数线中的重新输入效应。对于动能强度的少量值,我们发现有限温度的过渡到有序状态(柱状和交错),这些状态与相互作用的经典二聚体模型相匹配。
We present a quantum Monte Carlo investigation of the finite-temperature phase diagram of the quantum dimer model on the square lattice. We use the sweeping cluster algorithm, which allows to implement exactly the dimer constraint, supplemented with a equal-time directed loop move that allows to sample winding sectors. We find a high-temperature critical phase with power-law correlations that extend down to the Rokshar-Kivelson point, in the vicinity of which a re-entrance effect in the lines of constant exponent is found. For small values of the kinetic energy strength, we find finite-temperature transitions to ordered states (columnar and staggered) which match those of interacting classical dimer models.