论文标题
域知识驱动的3D剂量预测使用力矩损耗功能
Domain Knowledge Driven 3D Dose Prediction Using Moment-Based Loss Function
论文作者
论文摘要
剂量体积直方图(DVH)指标是诊所中广泛接受的评估标准。但是,将这些指标纳入深度学习剂量预测模型,这是由于其非跨性别性和非差异性而具有挑战性的。我们提出了一种新型基于力矩的损失函数,用于预测具有挑战性的常规肺强度调节疗法(IMRT)计划的3D剂量分布。基于力矩的损耗函数是凸面和可区分的,并且可以在没有计算开销的情况下轻松地将DVH指标纳入任何深度学习框架。也可以定制这些矩,以反映3D剂量预测的临床优先级。例如,使用高阶矩可以在高剂量区域中更好地预测串行结构。我们使用了一个大型数据集,其中包括360例2GY $ \ times $ 30分数的常规肺部患者,使用临床治疗的计划训练深度学习(DL)模型。我们使用计算机断层扫描(CT),计划目标体积(PTV)和风险风险轮廓(OAR)培训了类似UNET的CNN体系结构,以推断相应的素素3D剂量分布。我们评估了三种不同的损失函数:(1)平均绝对误差(MAE)损失,(2)MAE + DVH损失,以及(3)提出的MAE +矩损耗。使用不同的DVH指标以及剂量得分和DVH得分比较了预测的质量,该指标最近由AAPM知识的计划大挑战提出。具有(MAE +力矩)损耗函数的模型通过显着提高DVH得分(11%,p $ <$ 0.01),而同时具有相似的计算成本,从而超过了MAE损失的模型。它还优于接受(MAE+DVH)训练的模型,它可以显着提高计算成本(48%)和DVH得分(8%,p $ <$ 0.01)。代码,型号,Docker容器和Google Colab项目可在我们的Dosertx GitHub(https://github.com/nadeemlab/dosertx)上找到。
Dose volume histogram (DVH) metrics are widely accepted evaluation criteria in the clinic. However, incorporating these metrics into deep learning dose prediction models is challenging due to their non-convexity and non-differentiability. We propose a novel moment-based loss function for predicting 3D dose distribution for the challenging conventional lung intensity modulated radiation therapy (IMRT) plans. The moment-based loss function is convex and differentiable and can easily incorporate DVH metrics in any deep learning framework without computational overhead. The moments can also be customized to reflect the clinical priorities in 3D dose prediction. For instance, using high-order moments allows better prediction in high-dose areas for serial structures. We used a large dataset of 360 conventional lung patients with 2Gy $\times$ 30 fractions to train the deep learning (DL) model using clinically treated plans. We trained a UNet-like CNN architecture using computed tomography (CT), planning target volume (PTV) and organ-at-risk contours (OAR) as input to infer corresponding voxel-wise 3D dose distribution. We evaluated three different loss functions: (1) Mean Absolute Error (MAE) Loss, (2) MAE + DVH Loss, and (3) the proposed MAE + Moments Loss. The quality of the predictions was compared using different DVH metrics as well as dose-score and DVH-score, recently introduced by the AAPM knowledge-based planning grand challenge. Model with (MAE + Moment) loss function outperformed the model with MAE loss by significantly improving the DVH-score (11%, p$<$0.01) while having similar computational cost. It also outperformed the model trained with (MAE+DVH) by significantly improving the computational cost (48%) and the DVH-score (8%, p$<$0.01). The code, models, docker container, and Google Colab project are available on our DoseRTX GitHub (https://github.com/nadeemlab/DoseRTX).