论文标题
Kitaev磁铁的热自旋动力学$ - $散射连续性和磁场在随机半经典中引起的阶段
Thermal spin dynamics of Kitaev magnets $-$ scattering continua and magnetic field induced phases within a stochastic semiclassical approach
论文作者
论文摘要
蜂窝磁铁$α-$ rucl $ _3 $是实现Kitaev量子旋转液体(QSL)的主要候选材料,但在低温下显示了远距离磁性。然而,其宽阔的非弹性中子散射(INS)在有限频率下的反应被解释为“近距离QSL”。中等的平面磁场确实融化了残留的曲折顺序,从而在高场极化状态之前引起了特殊的中间场相。在INS测量中,低频自旋波消失,导致田间引起的中间状态的宽散射连续性,其性质目前正在争论中。在这里,我们研究了$ K-γ-γ' - $模型的磁场依赖性自旋动力学,在随机的半经验处理中,其中结合了有限温度波动的效果。在与INS实验相关的温度下,我们展示了锯齿形相的激发如何扩大,并且不同的中间阶段均显示出相似的连续响应。我们讨论了结果对实验的含义,并强调了区分有限温度波动与沮丧磁体中真正的量子分数特征的重要性。
The honeycomb magnet $α-$RuCl$_3$ is a prime candidate material for realizing the Kitaev quantum spin liquid (QSL), but it shows long-range magnetic order at low temperature. Nevertheless, its broad inelastic neutron scattering (INS) response at finite frequency has been interpreted as that of a 'proximate QSL'. A moderate in-plane magnetic field indeed melts the residual zigzag order, giving rise to peculiar intermediate field phases before the high-field polarized state. In INS measurements the low-frequency spin waves disappear, leading to a broad scattering continuum in the field-induced intermediate regime, whose nature is currently under debate. Here, we study the magnetic field dependent spin dynamics of the $K-Γ-Γ'-$model within a stochastic semiclassical treatment, which incorporates the effect of finite-temperature fluctuations. At temperatures relevant for INS experiments, we show how the excitations of the zigzag phase broaden and that the different intermediate phases all show a similar continuum response. We discuss the implications of our results for experiments and highlight the importance of distinguishing finite temperature fluctuations from genuine quantum fractionalization signatures in frustrated magnets.