论文标题

TGRMPT:头肩辅助多人跟踪器和新的大型巡回赛车机器人机器人

TGRMPT: A Head-Shoulder Aided Multi-Person Tracker and a New Large-Scale Dataset for Tour-Guide Robot

论文作者

Wang, Wen, Hu, Shunda, Zhu, Shiqiang, Song, Wei, Lin, Zheyuan, Jin, Tianlei, Mu, Zonghao, Zhou, Yuanhai

论文摘要

服务机器人安全和礼貌地服务,需要坚强地跟踪周围的人,尤其是对于旅游指南机器人(TGR)。但是,由于以下原因,现有的多对象跟踪(MOT)或多人跟踪(MPT)方法不适用于TGR:1。缺乏相关的大型数据集; 2。缺少适用的指标来评估跟踪器。在这项工作中,我们针对TGR的视觉感知任务,并介绍TGRDB数据集,TGRDB数据集是一种新颖的大规模多人跟踪数据集,其中包含大约5.6小时的带注释的视频和超过450个长期轨迹。此外,我们提出了一个更适用的指标,用于使用我们的数据集评估跟踪器。作为我们工作的一部分,我们提出了TGRMPT,这是一种新型的MPT系统,它结合了头部肩膀和全身的信息,并实现了最先进的性能。我们已经在https://github.com/wenwenzju/tgrmpt中发布了代码和数据集。

A service robot serving safely and politely needs to track the surrounding people robustly, especially for Tour-Guide Robot (TGR). However, existing multi-object tracking (MOT) or multi-person tracking (MPT) methods are not applicable to TGR for the following reasons: 1. lacking relevant large-scale datasets; 2. lacking applicable metrics to evaluate trackers. In this work, we target the visual perceptual tasks for TGR and present the TGRDB dataset, a novel large-scale multi-person tracking dataset containing roughly 5.6 hours of annotated videos and over 450 long-term trajectories. Besides, we propose a more applicable metric to evaluate trackers using our dataset. As part of our work, we present TGRMPT, a novel MPT system that incorporates information from head shoulder and whole body, and achieves state-of-the-art performance. We have released our codes and dataset in https://github.com/wenwenzju/TGRMPT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源