论文标题
$ m_n $中的一类最佳正面地图
A class of optimal positive maps in $M_n$
论文作者
论文摘要
事实证明,矩阵代数$ m_n $中的某些类别的正映射由最佳地图组成,即,地图不能从中不能减去任何完全正面地图而不会失去积极性。该课程提供了$ M_3 $中的choi正面地图的概括。
It is proven that a certain class of positive maps in the matrix algebra $M_n$ consists of optimal maps, i.e. maps from which one cannot subtract any completely positive map without loosing positivity. This class provides a generalization of a seminal Choi positive map in $M_3$.