论文标题
辐射流体动力学中的热不稳定性:不稳定性机制,依赖位置的S曲线和衰减曲线
Thermal instability in radiation hydrodynamics: instability mechanisms, position-dependent S-curves, and attenuation curves
论文作者
论文摘要
局部热不稳定性可以合理地解释在许多不同天体物理环境中多相气体的形成,但是只有在辐射流体动力学方程的光学薄极限(RHD)的光学上,该理论才能很好地理解。在这里,我们为假设灰色不透明度形式主义过渡到完整的RHD治疗奠定了基础。我们考虑了一种情况,当主辐射过程是免费的冷却和康普顿加热时,由于辐射场的硬化而导致气体变得不稳定。我们确定了可以发生这种情况的两种方式:(i)当康普顿温度随时间升高时,通过硬X射线分量的强度或能量升高; (ii)当衰减减少热成分的通量时,康普顿温度随着平板的深度而增加。两种方式都可能发生在活性银河核的宽线区域中,其中气体柱可能是电离界定的。在衰减显着的情况下,热平衡溶液曲线已成为位置依赖性的,并且不再足够使用单个平衡曲线在所有深度评估气体柱的稳定性。我们演示了如何为此目的分析新的平衡曲线 - 衰减曲线 - 我们表明,按照田间的不稳定性标准,沿该曲线的负斜率表明,每当气体温度随深度的增加时,恒定密度的平板都是热不稳定的。
Local thermal instability can plausibly explain the formation of multiphase gas in many different astrophysical environments, but the theory is only well understood in the optically thin limit of the equations of radiation hydrodynamics (RHD). Here we lay groundwork for transitioning from this limit to a full RHD treatment assuming a gray opacity formalism. We consider a situation where the gas becomes thermally unstable due to the hardening of the radiation field when the main radiative processes are free-free cooling and Compton heating. We identify two ways in which this can happen: (i) when the Compton temperature increases with time, through a rise in either the intensity or energy of a hard X-ray component; and (ii) when attenuation reduces the flux of the thermal component so that the Compton temperature increases with depth through the slab. Both ways likely occur in the broad line region of active galactic nuclei where columns of gas can be ionization bounded. In such instances where attenuation is significant, thermal equilibrium solution curves become position-dependent and it no longer suffices to assess the stability of an irradiated column of gas at all depths using a single equilibrium curve. We demonstrate how to analyze a new equilibrium curve -- the attenuation curve -- for this purpose, and we show that by Field's instability criterion, a negative slope along this curve indicates that constant density slabs are thermally unstable whenever the gas temperature increases with depth.