论文标题

液体中气泡的自由边界问题,以及球形对称平衡的歧管的指数稳定性

Free boundary problem for a gas bubble in a liquid, and exponential stability of the manifold of spherically symmetric equilibria

论文作者

Lai, Chen-Chih, Weinstein, Michael I.

论文摘要

我们考虑浸入固定温度不可压缩的流体中的气泡的动力学,并专注于由于热效应而放松扩展和收缩的球形对称气泡。我们研究了两个模型,即具有不断发展的自由边界的PDE系统:完整的数学模型以及一个近似模型,例如在Sonolumeinemence研究中出现。对于固定的物理参数(气液界面的表面张力,液体粘度,气体的导热率等),两种模型都共享一个球体对称平衡的家族,并通过气泡质量平滑地参数。我们的主要结果涉及近似模型。我们证明了平衡流形的非线性渐近稳定性相对于小球体对称扰动。收敛速度的时间为指数。为了证明这一结果,我们首先证明了非线性渐近稳定性的弱形式(没有明确的时间段),然后使用耗能耗散定律,然后通过中心歧管分析,引导弱的时间段,以达到指数级的时间确定。 我们还研究了每个模型中球形对称平衡家族的独特性。球体对称平衡的家族捕获了近似系统的所有常规球形对称平衡。然而,在整个模型中,该家族嵌入了更大的球形对称解决方案中。对于近似系统,我们通过在恒定平均曲率的闭合表面上应用Alexandrov定理,证明所有平衡气泡都是球体对称的。

We consider the dynamics of a gas bubble immersed in an incompressible fluid of fixed temperature, and focus on the relaxation of an expanding and contracting spherically symmetric bubble due to thermal effects. We study two models, both systems of PDEs with an evolving free boundary: the full mathematical model as well as an approximate model, arising for example in the study of sonoluminescence. For fixed physical parameters (surface tension of the gas-liquid interface, liquid viscosity, thermal conductivity of the gas, etc.), both models share a family of spherically symmetric equilibria, smoothly parametrized by the mass of the gas bubble. Our main result concerns the approximate model. We prove the nonlinear asymptotic stability of the manifold of equilibria with respect to small spherically symmetric perturbations. The rate of convergence is exponential in time. To prove this result we first prove a weak form of nonlinear asymptotic stability -- with no explicit rate of time-decay -- using the energy dissipation law, and then, via a center manifold analysis, bootstrap the weak time-decay to exponential time-decay. We also study the uniqueness of the family of spherically symmetric equilibria within each model. The family of spherically symmetric equilibria captures all regular spherically symmetric equilibria of the approximate system. However within the full model, this family is embedded in a larger family of spherically symmetric solutions. For the approximate system, we prove that all equilibrium bubbles are spherically symmetric, by an application of Alexandrov's theorem on closed surfaces of constant mean curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源