论文标题

带有系数的饰物矩阵和无限的饰面图案

Frieze matrices and infinite frieze patterns with coefficients

论文作者

Maldonado, Juan Pablo

论文摘要

饰面模式是与群集理论密切相关的组合对象。饰面模式的决定因素来自饰边的三角形区域,在先前的作品中,由Broline-Crowe-Isaacs和Baur-Marsh考虑了它们。在本文中,我们介绍了一种新型的矩阵,以实现任何无限的饰面模式。这种方法使我们能够给出鲍尔·马什(Baur-Marsh)给出的梭式决定因素结果的新证明。

Frieze patterns are combinatorial objects that are deeply related to cluster theory. Determinants of frieze patterns arise from triangular regions of the frieze, and they have been considered in previous works by Broline-Crowe-Isaacs, and by Baur-Marsh. In this article, we introduce a new type of matrix for any infinite frieze pattern. This approach allows us to give a new proof of the frieze determinant result given by Baur-Marsh.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源