论文标题

具有神经网络的选择校正的强力透镜的种群级推断

Population-Level Inference of Strong Gravitational Lenses with Neural Network-Based Selection Correction

论文作者

Legin, Ronan, Stone, Connor, Hezaveh, Yashar, Perreault-Levasseur, Laurence

论文摘要

新一代的天空调查有望在未来几年内提供史无前例的数据,其中包含数十万个新的强镜头系统。卷积神经网络当前是唯一可以处理数据攻击以发现和推断各个系统参数的最新方法。但是,许多涉及强镜头的重要测量需要对这些系统的人群级别的推断。在这项工作中,我们提出了一个分层推理框架,该框架将单个镜头系统与选择函数结合使用来估计人口级参数。特别是,我们表明,可以使用神经网络分类器对基于CNN的镜头发现器的选择功能进行建模,从而无需昂贵的Monte Carlo模拟,从而可以快速推断人口级别的参数。

A new generation of sky surveys is poised to provide unprecedented volumes of data containing hundreds of thousands of new strong lensing systems in the coming years. Convolutional neural networks are currently the only state-of-the-art method that can handle the onslaught of data to discover and infer the parameters of individual systems. However, many important measurements that involve strong lensing require population-level inference of these systems. In this work, we propose a hierarchical inference framework that uses the inference of individual lensing systems in combination with the selection function to estimate population-level parameters. In particular, we show that it is possible to model the selection function of a CNN-based lens finder with a neural network classifier, enabling fast inference of population-level parameters without the need for expensive Monte Carlo simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源