论文标题

可解释的法律案例匹配通过基于最佳运输的逆运输理由提取

Explainable Legal Case Matching via Inverse Optimal Transport-based Rationale Extraction

论文作者

Yu, Weijie, Sun, Zhongxiang, Xu, Jun, Dong, Zhenhua, Chen, Xu, Xu, Hongteng, Wen, Ji-Rong

论文摘要

作为法律检索的基本操作,法律案件匹配在智能法律制度中起着核心作用。该任务对匹配结果的解释性有很高的需求,因为其对下游应用的关键影响 - 匹配的法律案件可能会为目标案件的判决提供支持证据,从而影响法律决策的公平性和正义。在重点介绍这项具有挑战性的任务时,我们提出了一种新颖且可解释的方法,即\ textit {iot匹配},借助计算最佳运输,该方法将法律案例匹配问题作为反向最佳运输(IOT)问题。与大多数现有方法不同,这些方法仅关注法律案例之间的句子级语义相似性,我们的物联网匹配学会根据基于其句子的语义和法律特征从配对的法律案例中提取理由。提取的理由进一步应用于产生忠实的解释并进行匹配。此外,提议的IOT匹配对于在实际法律案例匹配任务中通常的一致性标签不足问题是可靠的,这既适用于监督和半监督的学习范式。为了证明我们的Io​​T匹配方法的优势并构建了可解释的法律案例匹配任务的基准,我们不仅扩展了法律中AI(CAIL)数据集的众所周知的挑战,而且还建立了一个新的可解释的法律案例匹配(ELAM)数据集,其中包含许多法律案例,并提供了详细和可解释的注释。这两个数据集的实验表明,在匹配预测,理由提取和解释生成方面,我们的物联网匹配始终优于最先进的方法。

As an essential operation of legal retrieval, legal case matching plays a central role in intelligent legal systems. This task has a high demand on the explainability of matching results because of its critical impacts on downstream applications -- the matched legal cases may provide supportive evidence for the judgments of target cases and thus influence the fairness and justice of legal decisions. Focusing on this challenging task, we propose a novel and explainable method, namely \textit{IOT-Match}, with the help of computational optimal transport, which formulates the legal case matching problem as an inverse optimal transport (IOT) problem. Different from most existing methods, which merely focus on the sentence-level semantic similarity between legal cases, our IOT-Match learns to extract rationales from paired legal cases based on both semantics and legal characteristics of their sentences. The extracted rationales are further applied to generate faithful explanations and conduct matching. Moreover, the proposed IOT-Match is robust to the alignment label insufficiency issue commonly in practical legal case matching tasks, which is suitable for both supervised and semi-supervised learning paradigms. To demonstrate the superiority of our IOT-Match method and construct a benchmark of explainable legal case matching task, we not only extend the well-known Challenge of AI in Law (CAIL) dataset but also build a new Explainable Legal cAse Matching (ELAM) dataset, which contains lots of legal cases with detailed and explainable annotations. Experiments on these two datasets show that our IOT-Match outperforms state-of-the-art methods consistently on matching prediction, rationale extraction, and explanation generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源